If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t=2t^2
We move all terms to the left:
15t-(2t^2)=0
determiningTheFunctionDomain -2t^2+15t=0
a = -2; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·(-2)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*-2}=\frac{-30}{-4} =7+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*-2}=\frac{0}{-4} =0 $
| 21x+3+66=90 | | 5x^2-75x+180=0 | | Y=-2/3x-9 | | 21x+3=66 | | 40+3x+10=180 | | x^2-9x-92=0 | | 21x=3+60 | | 21x+3=60 | | -10x-(-2x)=64 | | 21x+3+60=90 | | 31/2/9=x/27 | | 5x^2-20x+9x-36=0 | | 10x+24=-6 | | 49+2x=-31+7x=90 | | Y=(8+2x)(10+2x) | | m-6m=5 | | x+8=4x+3=180 | | 15(x+4)-2(1-x)-x-25=14x+45 | | 9x+0=6x+2 | | x+8+4x+3=180 | | 59048=3^x-1 | | 2x=90+49 | | Y=-21+43e^-0.45 | | 49+2x=90 | | 49+2x+90=-31+7x | | 136c=-29 | | 49+2x=-31+7x+90 | | 21+6x=-51 | | 13+2b=15 | | 3y-y=+6y | | (X+8)(x+8)-(x-4)(x+3)=185 | | 9g=0 |